分子生物學(xué)的發(fā)展大致可分為三個階段。
19世紀(jì)后期到20世紀(jì)50年代初,是現(xiàn)代分子生物學(xué)誕生的準(zhǔn)備和醞釀階段。在這一階段產(chǎn)生了兩點對生命本質(zhì)的認(rèn)識上的重大突破。
確定了蛋白質(zhì)是生命的主要物質(zhì)基礎(chǔ)。
19世紀(jì)末Buchner兄弟證明酵母無細(xì)胞提取液能使糖發(fā)酵產(chǎn)生酒精,第一次提出酶(enzyme)的名稱,酶是生物催化劑。20世紀(jì)20-40年代提純和結(jié)晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、共同酶、細(xì)胞色素C、肌動蛋白等),證明酶的本質(zhì)是蛋白質(zhì)。隨后陸續(xù)發(fā)現(xiàn)生命的許多基本現(xiàn)象(物質(zhì)代謝、能量代謝、消化、呼吸、運動等)都與酶和蛋白質(zhì)相聯(lián)系,可以用提純的酶或蛋白質(zhì)在體外實驗中重復(fù)出來。在此期間對蛋白質(zhì)結(jié)構(gòu)的認(rèn)識也有較大的進(jìn)步。1902年EmilFisher證明蛋白質(zhì)結(jié)構(gòu)是jfsoft.net.cn/wszg/多肽;40年代末,Sanger創(chuàng)立二硝基氟苯(DNFB)法、Edman發(fā)展異硫氰酸苯酯法分析肽鏈N端氨基酸;1953年Sanger和Thompson完成了第一個多肽分子——胰島素A鏈和B鏈的氨基酸全序列分析。由于結(jié)晶X-線衍射分析技術(shù)的發(fā)展,1950年P(guān)auling和Corey提出了α-角蛋白的α-螺旋結(jié)構(gòu)模型。所以在這階段對蛋白質(zhì)一級結(jié)構(gòu)和空間結(jié)構(gòu)都有了認(rèn)識。
確定了生物遺傳的物質(zhì)是DNA。
雖然1868年F.Miescher就發(fā)現(xiàn)了核素(nuclein),但是在此后的半個多世紀(jì)中并未引起重視。20世紀(jì)20-30年代已確認(rèn)了自然界有DNA和RNA兩類核酸,并闡明了核苷酸的組成。由于當(dāng)時對核苷酸和堿基的定量分析不夠精確,得出DNA中A、G、C、T含量是大致相等的結(jié)果,因而間長期認(rèn)為DNA結(jié)構(gòu)只有“四核苷酸”單位的重復(fù),不具有多樣性,不能攜帶更多的信息,當(dāng)時對攜帶遺傳信息的侯選分子更多的是考慮蛋白質(zhì)。40年代以后的實驗事實使人們對核酸的功能和結(jié)構(gòu)兩方面的認(rèn)識都有了長足的進(jìn)步。1944年O.T.Avery等證明了肺炎球菌轉(zhuǎn)化因子是DNA;1952年S.Furbery等的X-線衍射分析闡明了核苷酸并非平面的空間構(gòu)像,提出了DNA是螺旋結(jié)構(gòu);1948-1953年Chargaff等用新的層析和電泳技術(shù)分析組成DNA的堿基和核苷酸量,積累了大量的數(shù)據(jù),提出了DNA堿基組成A=T、G=C的Chargaff規(guī)則,為堿基酸對的DNA結(jié)構(gòu)認(rèn)識打下了基礎(chǔ)。
這一階段是從50年代初到70年代初,以1953年Watson和Crick提出的DNA雙螺旋結(jié)構(gòu)模型作為現(xiàn)代分子生物學(xué)誕生的里程碑開創(chuàng)了分子遺傳學(xué)基本理論建立和發(fā)展的黃金。DNA雙螺旋發(fā)現(xiàn)的最深刻意義在于:確立了核酸作為信息分子的結(jié)構(gòu)基礎(chǔ);提出堿基配對是核酸復(fù)制、遺傳信息傳遞的基本方式;從而最后確定了核酸是遺傳的物質(zhì)基礎(chǔ),為認(rèn)識核酸與蛋白質(zhì)的關(guān)系及其生命中的作用打下了最重要的基礎(chǔ)。在些期間的主要進(jìn)展包括:
遺傳信息傳遞中心法則的建立。
在發(fā)現(xiàn)DNA雙螺旋結(jié)構(gòu)同時,Watson和Crick就提出DNA復(fù)制的可能模型。其后在1956年A.Kornbery首先發(fā)現(xiàn)DNA聚合酶;1958年Meselson及Stahl同位素標(biāo)記和超速離心分離實驗為DNA半保留模型提出了證明;1968年Okazaki(岡畸)提出DNA不連續(xù)復(fù)制模型;1972年證實了DNA復(fù)制開始需要RNA作為引物;70年代初獲得DNA拓?fù)洚悩?gòu)酶,并對真核DNA聚合酶特性做了分析研究;這些都逐漸完善了對DNA復(fù)制機(jī)理的認(rèn)識。
在研究DNA復(fù)制將遺傳信息傳給子代的同時,提出了RNA在遺傳信息傳到蛋白質(zhì)過程中起著中介作用的假說。1958年Weiss及Hurwitz等發(fā)現(xiàn)依賴于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA雜增色證明mRNA與DNA序列互補(bǔ);逐步闡明了RNA轉(zhuǎn)錄合成的機(jī)理。
在此同時認(rèn)識到蛋白質(zhì)是接受RNA的遺傳信息而合成的。50年代初Zamecnik等在形態(tài)學(xué)和分離的亞細(xì)胞組分實驗中已發(fā)現(xiàn)微粒體(microsome)是細(xì)胞內(nèi)蛋白質(zhì)合成的部位;1957年Hoagland、Zamecnik及Stephenson等分離出tRNA并對它們在合成蛋白質(zhì)中轉(zhuǎn)運氨基酸的功能提出了假設(shè);1961年Brenner及Gross等觀察了在蛋白質(zhì)合成過程中mRNA與核糖體的結(jié)合;1965年Holley首次測出了酵母丙氨酸t(yī)RNA的一級結(jié)構(gòu);特別是在60年代Nirenberg、Ochoa以及Khorana等幾組科學(xué)家的共同努力破譯了RNA上編碼合成蛋白質(zhì)的遺傳密碼,隨后研究表明這套遺傳密碼在生物界具有通用性,從而認(rèn)識了蛋白質(zhì)翻譯合成的基本過程。
上述重要發(fā)現(xiàn)共同建立了以中心法則為基礎(chǔ)的分子遺傳學(xué)基本理論體系。1970年Temin和Baltimore又同時從雞肉瘤病毒顆粒中發(fā)現(xiàn)以RNA為模板合成DNA的反轉(zhuǎn)錄酶,又進(jìn)一步補(bǔ)充和完善了遺傳信息傳遞的中心法則。
對蛋白質(zhì)結(jié)構(gòu)與功能的進(jìn)一步認(rèn)識。
1956-58年anfinsen和White根據(jù)對酶蛋白的變性和復(fù)性實驗,提出蛋白質(zhì)的三維空間結(jié)構(gòu)是由其氨基酸序列來確定的。1958年Ingram證明正常的血紅蛋白與鐮刀狀細(xì)胞溶血癥病人的血紅蛋白之間,亞基的肽鏈上僅有一個氨基酸殘基的差別,使人們對蛋白質(zhì)一級結(jié)構(gòu)影響功能有了深刻的印象。與此同時,對蛋白質(zhì)研究的手段也有改進(jìn),1969年Weber開始應(yīng)用SDS-聚丙烯酰胺凝膠電泳測定蛋白質(zhì)分子量;60年代先后分析得血紅蛋白、核糖核酸酶A等一批蛋白質(zhì)的一級結(jié)構(gòu);1973年氨基酸序列自動測定儀問世。中國科學(xué)家在1965年人工合成了牛胰島素;在1973年用1.8AX-線衍射分析法測定了牛胰島素的空間結(jié)構(gòu),為認(rèn)識蛋白質(zhì)的結(jié)構(gòu)做出了重要貢獻(xiàn)。
70年代后,以基因工程技術(shù)的出現(xiàn)作為新的里程碑,標(biāo)志著人類涂認(rèn)識生命本質(zhì)并能主動改造生命的新時期開始。其間的重大成就包括:
1 重組DNA技術(shù)的建立和發(fā)展
分子生物學(xué)理論和技術(shù)發(fā)展的積累使得基因工程技術(shù)的出現(xiàn)成為必然。1967-1970年R.Yuan和H.O.Smith等發(fā)現(xiàn)的限制性核酸內(nèi)切酶為基因工程提供了有力的工具;1972年Bery等將SV-40病毒DNA與噬菌體P22DNA在體外重組成功,轉(zhuǎn)化大腸桿菌,使本來在真核功能中合成的蛋白質(zhì)能在細(xì)菌中合成,打破了種屬界限;1977年Boyer等首先將人工合成的生長激素釋放抑制因子14肽的基因重組入質(zhì)粒,成功地在大腸桿菌中合成得到這14肽;1978年Itakura(板倉)等使人生長激素191肽在大腸桿菌中表達(dá)成功;1979年美國基因技術(shù)公司用人工合成的人胰島素基因重組轉(zhuǎn)入大腸桿菌中合成人胰島素。至今我國已有人干擾素、人白介素2、人集落刺激因子、重組人乙型肝炎病毒為疫苗、基因工程幼畜腹瀉疫苗等多種基因工程藥物和疫苗進(jìn)入生產(chǎn)或臨床試用,世界上還有幾百種基因工程藥物及其它基因工程產(chǎn)品在研制中,成為當(dāng)今農(nóng)業(yè)和醫(yī)藥業(yè)發(fā)展的重要方向,將對醫(yī)學(xué)和工農(nóng)業(yè)發(fā)展作出新貢獻(xiàn)。
轉(zhuǎn)基因動植物和基因剔除植物的成功是基因工程技術(shù)發(fā)展的結(jié)果。1982年P(guān)almiter等將克隆的生長激素基因?qū)胄∈笫芫鸭?xì)胞核內(nèi),培育得到比原小鼠個體大幾倍的”巨鼠“,激起了人們創(chuàng)造優(yōu)良品家畜的熱情。我國水生生物研究所將生長激素基因轉(zhuǎn)入魚受精卵,得到的轉(zhuǎn)基因魚的生長顯著加快、個體增大;轉(zhuǎn)基因豬也正在研制中。用轉(zhuǎn)基因動物還能獲取治療人類疾病的重要蛋白質(zhì),導(dǎo)入了凝血因子IX基因的轉(zhuǎn)基因綿羊分泌的乳汁中含有豐富的凝血因子IX,能有效地用于血友病的治療。在轉(zhuǎn)基因植物方面,1994年能比普通西紅柿保鮮時間更長的轉(zhuǎn)基因西紅柿投放市場。1996年轉(zhuǎn)基因玉米、轉(zhuǎn)基因大豆相繼投入商品生產(chǎn),美國最早研制得到抗蟲棉花,我國科學(xué)家將自己發(fā)現(xiàn)的蛋白酶抑制劑基因轉(zhuǎn)入棉花獲得抗棉鈴蟲的棉花株。到1996年全世界已有25萬公頃土地種植轉(zhuǎn)基因植物。
基因診斷與基因治療是基因工程在醫(yī)學(xué)領(lǐng)域發(fā)展的一個重要方面。1991年美國向一患先天性免疫缺陷。ㄟz傳性腺苷脫氨酶ADA基因缺陷)的女孩體內(nèi)導(dǎo)入重組的ADA基因。獲得成功。我國也在1994年用導(dǎo)入人凝血因子IX基因的方法成功治療了乙型血友病的患者。在我國用作基因診斷的試劑盒已有近百種之多;蛟\斷和基因治療正在發(fā)展之中。
這時期基因工程的迅速進(jìn)步得益于許多分子生物學(xué)新技術(shù)的不斷涌現(xiàn)。包括:核酸的化學(xué)合成從手工發(fā)展到全自動合成。1975-1977年Sanger、Maxam和Gilbert先后發(fā)明了三種DNA序列的快速測定法;90年代全自動核酸序列測定儀的問世;1985年Cetus公司Mullis等發(fā)明的聚合酶鏈?zhǔn)椒磻?yīng)(PCR)的特定核酸序列擴(kuò)增技術(shù),更以其高靈敏度和特異性被廣泛應(yīng)用、對分子生物學(xué)的發(fā)展起到重大的推動作用。
2 基因組研究的發(fā)展
目前分子生物學(xué)已經(jīng)從研究單個基因發(fā)展到研究生物整個基因組的結(jié)構(gòu)與功能。1977年Sanger測定了ΦX174-DNA全部5375個核苷酸的序列;1978年fiers等測出SV-40DNA全部5224對堿基序列;80年代λ噬菌體DNA合部48502堿基對的序列全部測出;一些小的病毒包括乙型肝炎病毒、艾滋病毒等基因組的全序列也陸續(xù)被測定;196提底許多科學(xué)家共同努力測出了大腸桿菌基因組DNA的全序列長4×106堿基對。測定整個生物基因組核酸的全序列無疑對理解這一生物的生命信息及其功能有極大的意義。1990年人類基因組計劃(HumanGenomeProjiect)開始實施,這是生命科學(xué)領(lǐng)域有史以來全球性最龐大的研究計劃,將在2005年時測定出人基因組全部DNA3×109堿基對的序列、確定人類約5-10萬個基因的一級結(jié)構(gòu),這將使人類能夠更好掌握自己的命運。
3 單克隆抗體及基因工程抗體的建立和發(fā)展
1975年Kohler和Milstein首次用B淋巴細(xì)胞雜交瘤技術(shù)制備出單克隆以來,人們利用這一細(xì)胞工程技術(shù)研制出多種單克隆抗體,為許多疾病的診斷和治療提供有有效的手段。80年代以后隨著基因工程抗體技術(shù)相繼出現(xiàn)的單域抗體、單鏈抗體、嵌合抗體、重構(gòu)抗體、雙功能抗體等為廣泛和有效的應(yīng)用單克隆抗體提供了廣闊的前景。
4 基因表達(dá)jfsoft.net.cn/shouyi/調(diào)控機(jī)理
分子遺傳學(xué)基本理論建立者Jacob和Monod最早提出的操縱元學(xué)說打開了人類認(rèn)識基因表達(dá)調(diào)控的窗口,在分子遺傳學(xué)基本理論建立的60年代,人們主要認(rèn)識原核生物基因表達(dá)調(diào)控的一些規(guī)律,70年代以后才逐漸認(rèn)識了真核基因組結(jié)構(gòu)和調(diào)控的復(fù)雜性。1977年最先發(fā)現(xiàn)猴SV40病毒和腺病毒中編碼蛋白質(zhì)的基因序列是不連續(xù)的,這種基因內(nèi)部的間隔區(qū)(內(nèi)含子)在真核基因組中是普遍存在的,揭開了認(rèn)識真核基因組結(jié)構(gòu)和調(diào)控的序幕。1981年Cech等發(fā)現(xiàn)四膜蟲rRNA的自我剪接,從而發(fā)現(xiàn)核(ribozyme)。80-90年代,使人們逐步認(rèn)識到真核基因的順式調(diào)控元件與反式轉(zhuǎn)錄因子、參與蛋白南間的分子識別與相互作用是基因表達(dá)調(diào)控根本所在。
5 細(xì)胞信號轉(zhuǎn)導(dǎo)機(jī)理研究成為新的前沿領(lǐng)域
細(xì)胞信號轉(zhuǎn)導(dǎo)機(jī)理的研究可以追述至50年代。Sutherland1957年發(fā)現(xiàn)cDNA、1965年提出第二信使學(xué)說,是人們認(rèn)識受體介導(dǎo)和細(xì)胞信號轉(zhuǎn)導(dǎo)的第一個里程碑。1977年Ross等用重組實驗證實G蛋白的存在和功能,將G蛋白與腺苷酸環(huán)化酶的作用相聯(lián)系起來,深化了對G蛋白偶聯(lián)信號轉(zhuǎn)導(dǎo)途徑的認(rèn)識。70年代中期以后,癌基因和抑癌基因的發(fā)現(xiàn)、蛋白酪氨酸激酶的發(fā)現(xiàn)及其結(jié)構(gòu)與功能的深入研究、各種受體蛋白基歷的克隆和結(jié)構(gòu)功能的探索等,使近10年來細(xì)胞信號轉(zhuǎn)導(dǎo)的研究更有了長足的進(jìn)步。目前,對于某些細(xì)胞中的一些信號轉(zhuǎn)導(dǎo)途徑已經(jīng)有了初步的認(rèn)識,尤其是在免疫活性細(xì)胞對抗原的識別及其活化信號的傳遞途徑方面和細(xì)胞增殖控制方面等形成了一些基本的概念,當(dāng)然要達(dá)到最終目標(biāo)還需相當(dāng)長時間的努力。
以上簡要介紹了分子生物學(xué)的發(fā)展過程,可以看到在近半個世紀(jì)中它是生命科學(xué)范圍發(fā)展最為迅速的一個前沿領(lǐng)域,推動著整個生命科學(xué)的發(fā)展。至今分子生物學(xué)仍在迅速發(fā)展中,新成果、新技術(shù)不斷涌現(xiàn),這也從另一方面說明分子生物學(xué)發(fā)展還處在初級階段。分子生物學(xué)已建立的基本規(guī)律給人們認(rèn)識生命的本質(zhì)拽出了光明的前景,分子生物學(xué)的歷史還短,積累的資料還不夠,例如:在地球上千姿百態(tài)的生物攜帶龐大的生命信息,迄今人類所了解的只是極少的一部位,還未認(rèn)識核酸、蛋白質(zhì)組成生命的許多基本規(guī)律;又如即使到2005年我們已經(jīng)獲得人類基因組DNa 3×109bp的全序列,確定了人的5-10萬個基因的一級結(jié)構(gòu),但是要徹底搞清楚這些基因產(chǎn)物的功能、調(diào)控、基因間的相互關(guān)系和協(xié)調(diào),要理解80%以上不為蛋白質(zhì)編碼的序列的作用等等,都還要經(jīng)歷漫長的研究道路?梢哉f分子生物學(xué)的發(fā)展前景光輝燦爛,道路還會艱難曲折。